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Introduction

The study of multi-period consumption-investment problems has been the subject of
numerous studies in the literature. While the employed settings and assumptions differ
considerably, all contributions share the common objective to offer a sound microeco-
nomic foundation of the decision behavior of investors with multi-period lives in the
presence of uncertainty due to stochastic investment returns. Such a setting occurs nat-
urally in many economic models such that the results open a wide array of applications
in portfolio theory and financial and stochastic macroeconomic models.

One of the first theoretical studies of a multi-period consumption-investment problem
under uncertainty dates back to Phelps (1965). He studies a multi-period expected util-
ity maximization problem with a single risky asset where returns follow an i.i.d. process
with a discrete probability distribution. The investor is endowed with additive sepa-
rable preferences over lifetime consumption and receives a constant non-capital income
stream in each period. Within this setting a recursive solution technique is applied to
derive optimal consumption and investment in each period. The setting covers the case
with a finite and an infinite planning horizon as a limiting case. Closed form solutions,
however, are only derived in the absence of non-capital income.

An extension to the case with possibly non-additive preferences and more general and
multivariate return distributions is provided in Fama (1970, 1976) . Utilizing a simi-
lar methodology the problem is solved recursively to obtain optimal decisions at each
stage of the planning horizon. Although it is argued that at each stage the problem
is well-defined and implies existence and uniqueness of a solution, several technical re-
quirements like measurability and/or integrability as well as existence of conditional
distributions needed for the solution to be well-defined are neglected there. Neither
credit nor safe investment is possible in this setting nor does the investor receive any
non-capital income.

Another extension into a somewhat different direction may be found in the articles by
Hakansson (1969, 1970) , see also Ingersoll (1987) for a survey. These studies restrict
attention to a particular class of utility functions and extend the work by Phelps (1965)
by allowing for credit, a risk-less investment possibility and an arbitrary (possibly time-
varying) number of risky assets. By adopting the same recursive solution technique the
class of utility functions under scrutiny lead to closed form solutions which allow to
obtain several insights into the consumption-investment behavior for the case with a
finite and an infinite planning horizon.

One of the major drawbacks common to all these approaches is that the underlying
decision problem is only formulated implicitly in a recursive fashion. Starting one pe-
riod prior to the terminal period a sequence of one-period decision problems is solved
to obtain solutions for each period of the planning horizon. It is then argued that these
recursively defined decisions define an optimal strategy over the entire life cycle. This
type of approach does not formulate the underlying one-shot decision problem involving




the choice of a consumption-investment strategy drawn from a suitably defined strategy
space. As a consequence, a comparison with strategies which deviate from the poten-
tially optimal one is not possible in this setting. While the recursive formulation solution
technique is justified by stochastic dynamic programming and the renowned principle of
optimality due to Bellman (1957), the prescribed setting does not offer the possibility to
verify the validity of this principle since no appropriate strategy space has been defined.
A more general treatment of decision problems under uncertainty may be found in
Grandmont & Hildebrand (1974) and Grandmont (1982). These studies restrict at-
tention to a three-period planning horizon and derive sufficient conditions for the ex-
istence of a solution to the problem. The intention of this paper is not to maintain
the full generality of their setup but to instead restrict attention to the particular case
of a multi-period consumption-investment problem as described above. In this regard,
we amend the existing approaches by defining consumption-investment strategies as
adapted stochastic processes defined in the appropriate space of random variables. This
type of approach seems to be common sense in the finance literature (see Duffie (1992)
or Pliska (1997) for the special case of a discrete probability space) and is therefore by
no means new. Among other advantages, our approach allows us to verify the validity of
the recursive solution approach and to prove the validity of the principle of optimality.
A particular goal of the paper is to characterize the demand functions defining the opti-
mal behavior in the decision period. For this purpose we adopt a slightly different setup
compared to the literature which typically formulates the decision problem for given
prices and expectations for asset returns. This formulation seems indeed favorable if
one restricts attention to the decision problem on the individual level in a given period
of time. If, however, the ultimate goal is to embed the individual decision problem into
a model of market interaction where prices are determined from the demand behavior of
investors, a formulation of the decision problem with respect to level asset prices rather
than asset returns seems to be desirable. If, in addition, the goal is a sequential for-
mulation of the model which captures the updating process of consumers’ expectations
about uncertain variables, it seems advantageous to parameterize the demand behav-
ior in expectations as well. In particular, this captures the possibility that consumers
update their expectations and revise their strategies over time as new and unexpected
information become available (see Hillebrand & Wenzelburger (2006) for a study in this
spirit).

The paper is organized as follows. Section 1 introduces the general setup of a multi-
period consumption investment problem followed by a formulation of the decision prob-
lem in Section 2. Existence and properties of solutions and of demand functions are
studied under general assumptions in Section 3 and for the much-studied class of CARA
preferences in Section 4. Section 5 concludes,mathematical proofs and technical prereq-
uisites are placed in Appendices A and B.




1 Consumption and investment strategies

Consider a consumer who takes decisions in discrete time. Let ¢t = 0 denote the current
period and N > 0 the consumer’s planning horizon at the end of which he dies such
that the set {0,1,..., N} defines the consumer’s remaining lifetime. In each period
n € {0,1,..., N} the consumer receives a non-capital income e, > 0. To transfer
income between different periods there are M + 1 investment possibilities corresponding
to different assets m = 0,1,..., M in each period. The first asset m = 0 is a one-
period lived bond which is traded at a price of unity at time n and pays a non-random
return R, > 0 in the following period n + 1. Since R, is determined at time n, the
bond provides a riskless investment possibility between any two consecutive periods.

The remaining assets m = 1,..., M are retradeable shares which are traded at strictly
positive asset prices p, = (Pv(zl),...,p%M))T € RY, and pay a non-negative random

dividend d,, = (dsll), ey d(nM))T e R (prior to trading) in each periodn € {0,1,..., N}.
The bond may be sold short without bound but no short selling of shares is possible
such that the sets Y = R and X = R]‘f describe feasible bond investments respectively
feasible risky portfolios in each period. The space Z := Y x X defines the set of feasible
portfolios in each period.

Denote by z_1 = (y_1,2_1) € Z the portfolio purchased by the consumer during the
previous period consisting of a bond investment y_; € Y and a non-negative vector
x_1 € X defining the number of shares in the portfolio. The investor’s initial wealth
at time t = 0 consists of his current non-capital income eq > 0 and his capital income
corresponding to the return on his previous investment z_; consisting of the return on
the bond investment (which is negative if y_; < 0) and the dividend earnings and selling
revenue of the stock investment (which is positive). We therefore set

wo :=¢€y+y—1-R_1+ xfl(po + do) (1)

for the consumer’s initial wealth. It is assumed that the decision in ¢ = 0 is made
after the dividend payment dy € Rf and the consumer’s current non-capital income
eo > 0 have been observed but prior to trading, i.e., before the bond return R, and
asset prices py have been determined. Hence the consumer treats these variables as
parameters R > 0 and p € R}, . Likewise his current wealth position defined by (1)
is treated as parameter w € R in the decision problem. Although the latter value will
generically (whenever z_; # 0) depend on current asset prices, it will be convenient to
treat current wealth as a separate parameter.

At time ¢ = 0 the consumer holds expectations é := (é,...,éy) € RY for his future
non-capital income with €, > 0 denoting the non-capital income expected to receive in
period n € {1,..., N}. Likewise he holds expectations R:= (Rl, el ]A%N,l) € RY;! for
future bond returns where R, is his point forecast for the bond return R,, between future
periods n and n+ 1, n € {1,..., N — 1}. For the following derivations the consumer’s
planning horizon /N as well as his expectations will be assumed to be fixed quantities and
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will therefore be suppressed as arguments of functions, etc. to alleviate the notation.
In each period n € {0,1,..., N} the consumer can consume part of his wealth and
use the investment possibilities described above to transfer wealth into future periods.
Restricting consumption to be non-negative the set C = R, defines feasible consumption
plans in each period. For n > 0 denote the pair s,, :== (p,, d,) € S of prices and dividends
in period n where S := R]‘f 4 X Rﬂ‘f denotes the corresponding price-dividend space. In
principle, the vector s, could contain other uncertain variables, however, the previous
definition will turn out to be sufficient and contains all relevant quantities to formulate
and solve the consumer’s decision problem. At time ¢ = 0 there is uncertainty about all
future s,, n > 0 which are treated as random variables in the decision problem. More
specifically, the consumer considers future prices and dividends as an S-valued stochastic
process {sp}n>1 of random variables defined on a probability space (2, F,P) which are
adapted to a suitable filtration {F,},>1 of sub-o-algebras of F.!

The following notion of a strategy will be employed in the sequel. In this regard, B(A)
denotes the Borel o- algebra on a topological space A.

Definition 1
(i) A consumption strategy is a list C = (cg,c1(),...,cn(+)) consisting of a decision
¢o € C and B(S™)—B(C) measurable functionsc,, : S* — C foreachn =1,..., N.

(ii) An investment strategy is a list Z = (zy, z1(),-- ., 2n(+)) consisting of a decision
20 = (Yo, o) € Z and B(S™) — B(Z) measurable functions z, = (Y, Tn) : S" — Z
foreachn=1,...,N.

(iii) The pair (C, Z) is called a consumption investment strategy or simply a strategy.

A consumption strategy C' specifies a current consumption decision ¢y and consumption
plans for all future periods n = 1,..., N within the consumer’s planning horizon which
are made conditional on the random variables sy, ..., s, observed up to time n.? Likewise
the investment strategy Z specifies a current investment zy = (yo,Zo) and planned
investments in bonds and shares for all future periods. Since the consumer’s economic
life ends in period N, no portfolio is carried over to period N + 1 such that zy = 0
for the investment plan in period N. In the sequel we shall adopt the notation s} :=
(s1y...,5,) €S™ n>1 and set Ry :=R. Furthermore, we shall frequently suppress the
arguments of a plan for period n, writing just ¢,, y,, and z, instead of ¢, (s}), yn(s?),

! This kind of behavior suggests that the consumer perceives future asset prices and dividends to
be the primary source of randomness and uncertainty while future non-capital incomes and bond
returns are either known or can be relatively precisely predicted. This corresponds to the standard
setup applied in most models in the literature.

The literature often defines a strategy as an adapted stochastic process defined on a probability
space representing uncertain future states of the world. While the definition given here is equivalent
from a mathematical point of view, the uncertainty here rests on future asset prices and dividends
rather than states of the world. This formulation appears more suitable from an economic point of
view since prices and dividends are the relevant quantities which are directly observable.




and z,(s7). Given these conventions, the following definition characterizes the strategies
which are feasible from the initial situation at time ¢ = 0.

Definition 2
Given the bond return R > 0, asset prices p > 0 and initial wealth w at time t = 0, a
strategy (C, Z) is called feasible if

(i) co+yo+aip=w
(ii) foreachn=1,...,N
Cn+ Yn+ 2 D0 = En + Ro_1 Yn1+ 2, 1 (pn +dyp) Vst € S™
The set of all strategies which are feasible from (R, p,w) is denoted by B(R,p,w).

Throughout we shall assume that the strategy set #(R, p, w) is non-empty. Conditions
under which this is the case are stated in Lemma 1 below. Associated with the choice
of an investment strategy Z is the induced wealth process {W,(Z, s7)}\_, where

Wn(Za 8711) = én + Rn—l Yn—1 + x;ll,——l (p'rb + dn) . (2)

The real number W, (Z, s7) describes the consumer’s future wealth at time n > 1 de-
pending on the investment strategy Z = (2,)_g = (Yn, Zn)n—, and the random variables
S1,-.-,5, observed up to period n. Note that wealth may well become negative. How-
ever, the following Lemma 1 shows that there exist lower bounds on planned bond in-
vestments and on the wealth process which are essentially determined by the discounted
non-capital income stream. To obtain a compact notation define the values

~ A~

é() = é1+?2++$20
Ry Ry-- Ry
R P e (3)
E, = 24+ +—— _>0,n=1,...,N
Rn Rn"'RNfl

derived from the expectations é and R with the understanding that Ey := 0. For each
future period n =1,..., N, the value E,, > 0 defines the discounted non-capital income
stream expected to receive after period n. Likewise, given the current bond return
R > 0, the value é;/ R defines the expected future non-capital income stream discounted
to the decision period ¢t = 0. Utilizing these values, the following lemma establishes the
desired properties of the consumer’s investment behavior and the wealth process and
provides conditions under which the strategy set is non-empty.

Lemma 1
Let ¢ > 0 and E, > 0, n = 1,...,N be defined as in (3). Then for each strategy
(C,Z) € B(R,p,w) the following holds true:




(i) The bond investments (yo, y1(-),--.,yn_1(-)) associated with 7 satisfy
Yo > —éo/R and y,(s?) > —E, for alls? € S™

(ii) The associated wealth process {W,(Z, s7)}._, defined as in (2) satisfies:
Wo(Z,s?) > —FE, for all s? € S™

(iii) The strategy set B(R, p,w) is non-empty if and only if w > —éy/R.

Proof: We show claim (i) for n = N — 1 and then apply an induction argument. Let
(C,Z) € B(R,p,w) be an arbitrary strategy. Since C = R, and there is no investment
in the terminal period, the consumption plan for period N must satisfy

cN=én+ Ry 1ynv_1+ zy_1(py +dn) >0 (4)

for all sM € S¥. If N > 1, let s ' € S¥~! be arbitrary but fixed. Then (4) must hold
for any sy € S. Recalling that S = R}, x RY, the last term on the r.h.s. of (4) is
non-negative but may become arbitrarily small. It follows that (4) can only be satisfied
for all sy € S if RN_lyN_l > —éy. If N > 1 this requires yN_l(sf]_l) > —EN_l for all
sY~t € SN=1 while for N = 1 one must have y, > —¢é,/R.

Now let n € {0,1,..., N — 2} be arbitrary and assume that the claim is true for n + 1,
ie., yny1(s7TH) > —En+1 for all s7*! € S"*!. By Definition 2

Cht1 = én+1 + Rn Un + x;— (pn+1 + dn+1) — YUn+1 — x;l;+1pn+1
S én—i—l + Rn Un + x;l; (pn—|—1 + dn—l—l) + En+1- (5)

Using a similar argument as in the first step equation (5) requires that for all s, € S
én+1 + Rnyn + (pn+1 + dn+1)Txn + EnJrl Z 0

and, therefore, é,,1 + Royn + En+1 > 0. For n > 0 this is equivalent to y,(s}) > —-E,
for all s7 € S™ If n = 0 the above inequality requires yo > —é;/R. This proves claim
(i). The assertion (ii) is an immediate consequence of (i) and equation (2). The ’only
if’ part in (iii) can be proved by using Definition 2 (i) and the result from (i) to see that
w < —é/Rimpliesco =w—yo—a'p < w—1yo < w+é/R < 0 such that the condition
w > —é&y/R is necessary. The ’if’ part in (iii) follows from the fact that as soon as
w > —éy/R the set B(R, p, w) contains the pure-bond investment strategy which never
invests in any risky assets m > 0 and consumes only in the terminal period of life. W

The results from Lemma 1 are direct consequences of the definition of a strategy and
are thus independent of any preferences, etc. The following corollary is immediate from
Definition 2 and Lemma 1.

Corollary 1

Ifw = —éy/R the set (R, p, w) contains a single strategy (C, Z) defined by the decision
co =0, yo = —é/R, zo = 0 and plans ¢, = 0, y, = —FE, and x, = 0 for each
n=1,...,N.




2 The general decision problem

To derive the consumer’s decision problem we make assumptions on his expectations for
future asset prices and dividends as well as on his preferences over alternative consump-
tion streams. For the following derivations assume that the strategy set B(R, p, w) is
non-empty. Recall that at time ¢ = 0 the consumer treats future prices and dividends
S1, S92, ... as random variables. The following assumption characterizes his expectations
for future asset prices and dividends within his planning horizon.

Assumption 1

Given the planning horizon N > 0 the consumer’s expectations at time t = 0 for future
asset prices and dividends are given by a probability measure v on the measurable
product space (SN ,B(S¥ )) defining a subjective joint probability distribution of the
random variables sq,...,Sy.

In the sequel we denote the class of all probability measures on (SN ,B(SY )), N >1, by
Prob(SY). In the literature the joint distribution over future asset prices (respectively
asset returns) is usually assumed to be of the product form v = v; ® ... ® vy such
that the signals s,, and s,, are perceived to be independent whenever n # m. No such
assumption is needed here.

The consumer’s preferences over alternative consumption streams are characterized next.

Assumption 2
Given the planning horizon N > 0, the consumer’s preferences over consumption within
his remaining lifetime can be represented by the utility function

(cos 1y en) — u(cp) + Zﬂ"u(cn) (6)

defined on CN*! with discount factor 3 > 0. The instantaneous utility function u :
C — R is continuous, strictly increasing, and strictly concave.

For each strategy (C, Z) € #(R,p,w) and s € SV, define the utility attained over the
remaining lifetime

N

Ua(C,sY) = uleo) + 3 Brulea(s?)).

n=1

The expected utility induced by strategy (C, Z) € #B(R, p,w) is thus given by

B, [(C.)] = [ Uo(C.s?) vl (7

For each (R,p,w) for which B(R,p,w) # 0 let

ViR, p.w) = sup { B [0h(C,] (€. 2) € #(R.pw)}. ®)
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The definition of an optimal strategy is now straightforward.

Definition 3
Given a triple (R, p, w) with (R, p,w) # 0, a strategy (C*, Z*) € B(R,p,w) is termed
an optimal strategy if E, [Uy(C*,-)] = Vo (R, p, w) with Vo(R, p, w) being defined in (8).

The consumer’s objective is to choose an optimal strategy (C*, Z*) € Z(R, p,w) in the
sense of Definition 3. Formally his decision problem at time ¢ = 0 may be stated as

max{ B, [04(C, ][ (€, 2) € #(Ropw) | o)
It is clear that the problem (9) is only well-defined if the supremum in (8) is finite, i.e.,
if Vo(R, p, w) < oo. While this is trivially satisfied for the case where the utility function
U is bounded (as is often assumed in the literature), this requirement turns out to be
too strong in many scenarios. This is for example the case with a power utility function
which is studied in Section 4. The following assumption offers an alternative providing
two sufficient conditions for the decision problem (9) to be well-defined.

Assumption 3
At least one of the following two conditions is satisfied:

(i) The utility function u in Assumption 2 is bounded.

(ii) The measure v in Assumption 1 has compact support S1 x ... x Sy € B(SY) with
each S, CS,n=1,...,N, being compact.

The requirement in (ii) that the support is the product of compact sets is made just for
convenience. In principle, it suffices to assume that the support of v is a compact set.
The following lemma shows that (ii) in Assumption 3 is indeed sufficient for the decision
problem to be well-defined even if U is not bounded. The proof is given in Section A.1
in Appendix A of this chapter.

Lemma 2
Let Assumptions 1, 2 and 3 be satisfied. Then the supremum defined in (8) satisfies
Vo(R,p,w) < oo for all (R,p,w) for which B(R,p,w) # .

In the sequel we shall assume that Assumption 3 is satisfied such that the consumer’s
decision problem (9) is well-defined. Associated with a solution to (9) defining an
optimal strategy (C*, Z*) is an optimal decision (cf, z§) € C x Z for t = 0. The main
goal of the following section is to state conditions under which this optimal decision is
well-defined and can be represented by a continuous function describing the consumer’s
demand behavior in the decision period.




3 Existence of demand functions

Consider next the derivation of an optimal strategy defining a solution to the consumer’s
decision problem. Since this task turns out to be trivial in the case where w = —¢y/R
(see Corollary 1), assume for the following derivations that w > —é;/R. Employing
a recursive solution technique from stochastic dynamic programming, it will be shown
that under some mild additional restrictions a continuous demand function describing
the optimal consumption and investment decision for t = 0 can be defined. To alleviate
the subsequent notation we define for each z € RM and s = (p,d) € S the operation
r®s:=1x'(p+d) and the function W :Z xS xR, xR,; — R

W((y,x),s,é,fﬁ) =é+Ry+1®s. (10)

Given expectations é,,; > 0, R, >0and a portfolio z, € Z purchased at time n the
value W (zy, Spi1, €nt1, Rn) describes the consumer’s wealth in period n + 1 depending
on prices p,+1 and dividends d,,;. The following definition introduces the concept of

non-redundant assets that will become important in the sequel.

Definition 4
A probability measure v on (S, B(S)) is said to induce non-redundant assets if for each

22" €L, 2 # 2" the set A(Z',2") := {s € S|W(2,s,0,1) # W(z”,s,(),l)} € B(S)
satisfies U(A(2',2")) > 0.

The property of non-redundancy ensures that two distinct portfolios can not induce the
same return with probability one. This condition will turn out to be necessary in order to
obtain demand functions. Intuitively, it is clear that otherwise the consumer’s portfolio
decision may not be uniquely determined. Note that the property of non-redundancy
depends neither on the expected non-capital income nor on the bond return which is
the reason why they have been set to zero and unity in the definition.

Lemma 3

Let U be a probability measure on (S, B(S)) and § : S — S be the identity. Suppose that
the variance-covariance matrix 3 := [, (38—, [8])(8 — E; [3]) 7] exists and is positive
definite. Then ¥ induces non-redundant assets.

Proof: We show that conversely if the measure © does not induce non-redundant assets
then the variance-covariance matrix 3 cannot be positive definite. To this end, suppose
there exist portfolios 2/ = (v/,2'),2" = (y",2") € Z, 2’ # 2" such that W(Z,§,0,1) —
W(z",5,0,1) =00 -as. Let Az := 2/ — 2" # 0 and define § as above. Note that 2/ # 2"
(otherwise z' = z” would imply ' # " which is not possible). Let Az :=z' — 2" # 0
and ¢ := 3y’ —y" and define the random variable AW : § — R, AW (s) := Az@®s. Then
AW (38) = c p-a.s. and, letting H := [Is, Iy] € RM*2M where Iy is the M x M identity
matrix 0 = V,[AW (5)] = Az " HE; [(é - E; [8)(s - E; [§])T] HAz = Az"THSHAz. A
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The previous proof made obvious that the requirement of Lemma 3 that S be positive
definite can be weakened as follows.

Corollary 2
Let H := [Iy;, I;] € RM*2M _ If under the hypotheses of Lemma 3 the matrix HSH is
positive definite, then U induces non-redundant assets.

Given the random variable § with distribution 7 Corollary 2 essentially requires only
that the induced distribution of the cum-dividend prices ¢ := H § has a positive definite
variance-covariance matrix.

The subsequent recursive solution of the consumer’s decision problem requires to char-
acterize for each n > 1 the conditional distribution of the random variable s,, depending
on the previous observations si,...,s,_1. Clearly, if N = 1, this task is trivial. If N > 1,
the following lemma describes how the joint probability distribution v introduced in As-
sumption 1 can be factorized into conditional probabilities and a marginal probability.
The proof is given in Section A.2 in Appendix A of this chapter.

Lemma 4

Let N > 1 and S = R, x RY. There exists a factorization of the measure v into
conditional probabilities @, : S™' x B(S) — [0,1], n = 2,..., N, and a marginal
probability vy : B(S) — [0, 1] such that for each B € B(SY):

/ /13 1) Qn(s?  dsn) -+ - Qa(s1, dsy)vi(dsy). (11)

The factorization is v-a.s. unique.

For each n = 2,..., N the map Q,(s7 *,-) : B(S) — [0, 1] defines the conditional dis-
tribution of the random variable s,, depending on the previous observations si, ..., S,_1,
while the measure v; defines the marginal distribution of the random variable s;. The
following assumption imposes some additional restrictions on these distributions.

Assumption 4
The probability distributions Q,,(s7~",-),n = 2,..., N and v, defined on the measurable
space (S, B(S)) satisfy the following conditions:

(i) Each @, has the following Feller-property (for details, see Stokey & Lucas 1994):
For each bounded and continuous function h:HxS" — R with H C R™ the
integral function H(z,s?™") := [jh(z, st s)Qn(st ™", ds) is again bounded and

continuous on H x S™~ L

(ii) Each conditional distribution Q,(s7,-) as well as the marginal distribution v,
induces non-redundant assets in the sense of Definition 4.

10



Consider now the existence of a solution to the consumer’s decision problem (9). Using a
well-known dynamic programming approach the original /N + 1-period decision problem
is split into a sequence of N + 1 one-stage problems. Since this is again trivial if N =1,
assume for the following derivations that N > 1. To alleviate the subsequent notation
we set B, (w,p) = {(c,y,x) € CxY x X|c+y+pr =w, y > —En} for each
n = 1,...,N. Define the value functions V,, : [-E,,00[ x S™ — R recursively by
setting Vy (wy, sV) := u(wy) and for each n=1,...,N — 1

Vi (wy, sT) = max {u(c) + ﬂ/VnH (W(z,s,énH, R,), sV, s) Qn+1(sT, ds)}
(¢,2)EBy (wn,,pn) S ( )
12

In the literature the recursion (12) is called Bellmann’s equation. The following propo-
sition ensures that the functions in (12) are indeed well-defined objects.

Proposition 1
Let Assumptions 1- 4 be satisfied. Then the following holds true:

(i) The value functions V,,, n = 1,..., N defined recursively by (12) are well-defined
and continuous. If u is bounded, so is each V.

ii) Fach V, (-, s}) is strictly increasing and strictly concave for all sT € S™.
1 Y g 1

(iii) At each stagen =1,..., N —1 the solutions to the maximization problem (12) can
be represented by a pair of continuous functions (%, z%) : [~ Ep, 0o[xS" — Cx Z.

Proof: Properties (i) and (ii) are obviously true for n = N. Hence assume by way of
induction that there exists n € {1,..., N — 1} such that V},,; satisfies properties (i) and
(ii). We show that this implies the properties (i) and (ii) for the function V,, and the
solution to problem (12) satisfies (iii). The first part of the proof covers the case where
Assumption 3 (i) is satisfied and the utility function w is bounded. The second part
extends the argument to an unbounded utility function by assuming that the measure
v satisfies Assumption 3 (ii).

The first induction hypothesis is that V,,,; is well-defined, continuous, and bounded and
Vg1 (4, s771) : [~ Epq1, 0o[— R is strictly increasing and strictly concave for each fixed
s"T1 € S™*1. We show by induction that this implies that the claim holds for V,, and
the solution at stage n. To enhance readability the remainder of this proof is organized
in five steps.

Step 1: Let sT € S" and w,, > —E, be arbitrary but fixed. Note that the set B, (Wn, D)
defined as above is non-empty since w, > —E,,. For each (¢, 2) € By, (wy, p,) define

Unl(e, z; 87) := —i—ﬁ/ n+1 W(z s,énH,Rn),s’f,s) Qni1(st,ds) (13)

and note that the integral in (13) is indeed well-defined since for all (¢, z) € B, (wn, pn):
W(z, s, en+1,R ) = ény1 + Ry+z®s > €ny1 — R,E, = En+1 for each s € S.
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Moreover, Assumptions 2 and 4 (i) together with the induction hypothesis imply that
U, is continuous and bounded. Since p, > 0 the set B, (w,, p,) is compact implying
that the maximization problem

max { Un(c, z; s7)

(c,2)ECXZ

(Ca Z) € B, (wnapn)} (14)

possesses a solution (c*, z*).

Step 2: We show that the solution to (14) is unique. To this end, note that B, (wy,, p,)
is convex, hence it suffices to show that the map U,(-,s?) is strictly concave. Let
(d,2), (", 2") € Bn(wn,pn), (¢,2") # (",2") and A €]0,1] be arbitrary and define
(ex,za) == A, 2") + (1 — A)(¢",2"). We show that Uy,(ca, 2y, sT7) > AU,(C, 7, sT) +
(1 = NU,(", 2", s7). If 2/ = 2", this is trivially satisfied, for in this case ¢ # ¢’
and the assertion follows immediately from the strict concavity of u. So assume that
2! # 2. The non-redundancy condition (ii) from Assumption 4 implies that the mea-

surable set A,(z',2") = {s € S|W (2, s, éns1, Rn) # W(z”,s,én+1,Rn)} € B(S) has

positive measure, i.e., Qn11(sT, A, (2, 2")) > 0. The linearity of W(-,-, é,41, R,) implies

W (2r, S, ns1, Rn) = AW (2, 8, €nt1, Ry) + (1 = W (2", s, én41, Ry) for all s € S. This

together with the strict concavity of the function V4, (-, s71) gives

Vn—}-l(W(Z)\; S, én—|—13 Rn)a S?a 8) 2 )\Vn—}-l(W(Z,a S, én—}-la Rn)a S?a S)
+ (1 =NV (W (2", s,6ns1, Rn),s7,s)  (15)
for all s € S whereas the inequality is strict for s € A, (2',2"). Also note that the strict

concavity of v implies that u(cy) > Au(c) + (1 — A)u(c”). Integrating both sides of (15)
and applying Lemma 7 from Appendix B yields the desired inequality

A

Un(exs2a;sT) = ulen) + ;B/Vn—l—l(W(z)\a 8y Ent1, In), 87, 8) Qi1 (ST, ds)
S
> A (u(cl) + ﬁ / Vn+1(W(Z,: Sy én—f—l; Rn)v 8?7 S)Qnﬂ—l(s?v dS))
S
+ (1-2X) (u(c") + ,@/Vn+1(W(z", S, ént1, Rn), ST, s)QnH(s?,ds))
S
= AU,(c,2;s7) + (1 = N)U,(", 2"; sT).

This result permits us to define the solution to the maximization problem (14) as a
function (¢, %) : [—E,, 00[xS" — C X Z,

n»~n

(¢, zn) (wy, sT) = ar cir)lg&z{U"(c’ z; s7)
)

(c,2) € B, (wn,pn)}. (16)

Step 3: We claim that the mappings ¢}, z; and the function V,, are continuous.
To see this, define the budget set for alternative (w,,p,) as a correspondence B, :
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[—En,oo[fo+ = C x Z, which is non-empty-, compact- and convex-valued on its
domain of definition. Furthermore, we show in Lemma 10 in Appendix B that B, is
continuous. This together with the continuity of the function U, implies the continuity
of the solution function ¢} and z} by virtue of the Theorem of the Maximum (cf. Stokey
& Lucas 1994, p.57 and p.62). Substituting the solution (16) into (14) yields the value
function defined for all w,, > —E,, and sT € S™ as

Vn(wna 3?) =U, (c:b(wn: Srll)a Z;(wm 3712)§ 5711) ) (17)

the continuity of which follows immediately from the continuity of U,, and ¢, 2.

Step 4: We show that V, (-, sT) is strictly concave. To this end, let w' and w” be
arbitrary such that w' > —FE,, w" > —FE, and w' # w". Fix A €]0,1[ and define
wy = Aw' + (1 — M)w”. Furthermore, let (¢*,z"™*) := (¢*, 2%)(v', s7) € B, (w',p,) and
("™, 2") = (¢, z*)(w", sT) € B, (w",p,) be the optimal solutions belonging to w' and
w" and let (¢}, 2%) == A(c™, 2™*) + (1 — A)(c"™, 2"™) be their convex combination. Note
that (¢}, 25) € B, (wx,pn) but possibly (¢}, 25) # (¢*, 2*)(wa, s7), i.e., (¢}, 2}) does not
have to be the optimal solution at w,. Also note from the budget set that w' # w”
implies that (c*,2™) # ("%, 2"). This together with (17) and the strict concavity of
the function U, (-, s}) therefore implies the desired inequality

Valon,s3) > Un (¢ 24 50).
= U, ()\(CI*, ZI*) + (1 - )\)(C”*, Z”*); ng)
> AU, (%, 2™ 87) + (1 = U, ("™, 2™ s7)
= AV, (v, s?) + (1 = NV, (w", 7).

Step 5: We are left to show that V,(-,s7) is strictly increasing. To this end, let
w' > w" > —E, be arbitrary. Let (¢*,2"*) and (¢*, 2"*) be defined as in the previous
step and set § := w'—w"” > 0 and (¢}, 2}) := (¢ 44, 2™). Note that (¢}, 25) € B, (v, py)
but possibly (¢*, 2™*) # (¢, 25). Hence, exploiting the strict monotonicity of u:

Vaw', st > U, (e, 255 87) = Up (™ + 6, 2™ sT)

> U, ("™, 2" sT) =V, (w", sh).

Consider now the second case where u is not necessarily bounded but v satisfies As-
sumption 3 (ii). The previous induction proof may then be repeated under the induction
hypothesis that V,,; is well-defined and continuous and V,,,1(-, s7%%) : [=Ey 41, 00[— R
is strictly increasing and strictly concave for each st € S, From Lemma 9 it follows
that for each s? € S™ the measure @, 1(s7,-) is supported on a subset of the compact
set S,.1. From Lemma 8 and the Feller-property of @, it then follows that for each

(¢, 2) € B, (wn, py) and s} € S™ the function

Un(CaZ; 8711) = U(C) +ﬁ ~ Vn+1 (W(Z,S,én_H,Rn),S?,S) Qn+1(87115d8) (18)

Sn+1
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is well-defined (i.e., U, (c, z; s7) < 00) and continuous. Repeating steps 1-5 of the previ-
ous argument then shows the claim. |

Utilizing the value function V; obtained in the final recursion step, consider the following
one-stage decision problem defined for all (R, p) > 0 and w > —é,/R:

( n)lag Z{U(C) + ﬁ/v1 (W(z,5,61,R),s)i(ds) |c+y+a'p=w, y> —go/R}- (19)
c,z)eCXx S

The following theorem shows that the solution to (19) is unique and can be used together
with the functions defined by (16) to construct an optimal strategy.

Theorem 1
Under the hypotheses of Proposition 1 let the functions (¢, z%), n = 1,..., N be defined

as in (16) where ¢ (wy, V) := wy and 25 (sY) := 0VsY € S¥. Then for each (R,p) > 0
and w > —éy/ R the following holds true:

(i) The problem (19) has a unique solution (¢, z§) € C x Z.

(ii) The strategy (C*, Z*) defined by the optimal decision (¢}, z§) from (i) and plans

(', 2%"):S" — C X Z, n =1,..., N defined recursively as®
C;I(S?) C;(W(Z;—ll(s?_l)a Sns €n, F:zn—l)ﬂ 5711)
Z'(s1) = Z:(W(ZZ—ll(Srll_l)a Sy €ny Rn—1), 57)

is an optimal strategy in the sense of Definition 3.
(iii) For any strategy (C,Z) € A(R,p,w):

(co, 20) # (3, 20) = B [Uo(C,)] < By [Un(C7, )]

The proof of Theorem 1 can be found in Section A.3 in Appendix A of this chapter.
It asserts that an optimal strategy exists and can be constructed from the solutions
obtained from the recursive definition (12). More importantly, however, it ensures that
the optimal decision for ¢ = 0 is uniquely defined by the solution to the one-stage
problem (19). For alternative prices (R, p) and wealth w determined by (1) this optimal
decision defines the demand behavior of the consumer in the decision period. The main
result of this section is summarized in the following theorem.

Theorem 2
Let the consumer’s planning horizon N > 1 and expectations é = (éi,...,éy) € RY,
R=(Ry,...,Ry_1) € RYT" and v € Prob(SN) be given and let Assumptions 1 - 4 be

3 By abuse of notation we set z_,'(s7 ') := zf if n = 0.
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satisfied. Then there exists a continuous demand function o(-; V,é,f%) defined for all
(R,p) > 0 and w > —éy/R as

0e(R, p,w; v, é, R)
o(R,p,w;v,&,R) = | ¢,(R,p,w;v,é R) (20)
¢u(R,p,w; v, &, R)

= argmax {u(c) +B[Vi(W(y,z,s,é1,R),s)vi(ds)|c+y+az'p=w,y> —€O/R}.
s

(c,y,x)eCxY xX

Proof: Existence of the demand function follows immediately from Theorem 1 (i).
Continuity can be proved as in step 3 in the proof of Proposition 1. In this re-
gard, continuity of the budget correspondence (R,p,w) = By(R,p,w) := {(c,y,z) €
CxYxXlc+y+az'p=w,y> —é/R} follows by applying Lemma 10, noting that
By(R,p,w) ={(c,y,2) ECXxYXxX|c+y+a'p=Rw,y>—é)} foreach R>0. W

The function ¢(-; v, é, R) describes the consumer’s optimal consumption and investment
in bonds and stocks in the decision period ¢ = 0 for alternative prices (R, p) > 0 and
wealth w > —¢y/ R determined by (1). At this point, some remarks about the consumer’s
wealth w and the condition w > —¢&y/R are in order which was required to obtain a
non-empty strategy set. Using equation (1) this constraint can be written as

eo+R_1y_1+ (p+do) w1 > —&/R. (21)

Since by (3) € > 0, it is clear that (21) can only be violated if y_; < 0, i.e., if the
consumer has taken credit by selling bonds in the previous period. We see that a
sufficient condition for (21) to hold is that y 1 > —(eg/R_1 + é/(RR_1)). However,
Lemma 1 has shown that there exist lower bounds on the consumers credit taking
behavior which are determined by the expectations for his discounted future non-capital
income stream. Given these subjective expectations the consumer chooses a strategy
which ensures his solvency at any point in time for any possible realization of prices
and dividends. Hence we see that if during the previous ¢ = —1 the consumer has
correctly anticipated his non-capital income ey and the bond return R > 0 at time
t = 0 (and continues to hold the same expectations for his discounted future non-capital
income stream), the inequality y_; > —(eo/R_1 + € /(R R_1)) is automatically satisfied
as a consequence of the consumer’s credit taking behavior. It is therefore clear that as
long as consumers’ predictions for future non-capital income and future bond returns
are correct or at least sufficiently precise, bankruptcy is excluded by the behavior of
consumers themselves. Clearly, if expectations fail to be correct and actual realizations
deviate too much from their predicted values, a potential problem of bankruptcy comes
into play (which may still be avoided if dividend payments and/or asset prices are
sufficiently large).
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4 Demand behavior with CRRA utility

The previous section has established the existence of solution to the consumer’s multi-
period decision problem and of a continuous demand functions under quite general
assumptions on the consumer’s preferences. To derive additional properties of these
demand function this section assumes a specific functional form of the utility function «
in Assumption 2 which exhibits constant absolute risk aversion (CRRA).* To this end
we make the following assumption.

Assumption 5
The utility function u in Assumption 2 is of the form

1
—c" v#0
v
Inc v=0

u(c;y) = (22)

Consider the recursive solution to the consumer’s decision problem studied in Section
3. We first treat the case where v # 0 in (22). The following proposition shows that in
this case the value functions V,, defined by (12) possess a particularly convenient form.

Proposition 2
Let Assumptions 1- 5 be satisfied and suppose v # 0 in (22). Define the values E,,
n=1,...,N asin (3). Then the following holds true.

(i) Forn=1,...,N and w, > —E, the value functions V,, defined by (12) satisty

Valwn,s7) = B u([fwn + Bufou(s3);7)

where vy = 1 and the mappings v, : S — R, are defined recursively as

1-y

wa(st) = (1+er(sn)) T

U;(S?) = 7ymax {5/Su([Rn(1 - ‘ngn) + ¢ ©® S]Un-l-l(s’ll’ 8); ’7) Qn-l—l(s?a ds)}

(ii)) The solution functions defined in equation (16) take the form

cp(wn,57) = en(sT)(wn + En)
Ty (W, 87) = (1 —Cu(sy))(wn + En)en(s?)
U (wn, s7) = (1= &(s7) (wn + En) (1 — p b (s7)) — By

for each n =1,..., N where ¢,(s}) :== [1+ v;(s?)ﬁ}_l and

0”(8?) = argmax {ﬁ /S u([Rn(l - HTpn) + 0 ® S]Un-l—l(s?a S); 7) Qn+1 (8?7 ds)}

020,60 Tpn<1

4 Most of the subsequent results have been derived in a slightly different setting by Hakansson (1969).
All proofs of the following results are placed in Appendix A.
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Noting from (3) that éy = & + E; It follows from Proposition 2 and equation (19) that
an optimal decision for £ = 0 may be obtained from the following optimization problem:

(qglg&z{ (c; +ﬂ/ [Ry-l—eo-l—x@s]vl( K )Vl(ds)‘y—w—c—x p> —eO/R}
(23)

One also observes from their recursive definition in Proposition 2 that the functions v,
n = 1,..., N are exclusively determined by the consumer’s expectations R for future
bond returns and the distribution v for asset prices and dividends. Given these results
the following theorem characterizes the demand functions derived from (23). Given
the previous derivations the proof is straightforward by applying Lemma 6 given in
Appendix A.

Theorem 3

Given the planning horizon N > 1 let Assumptions 1 — 5 be satisfied and suppose v # 0.
Let expectations ¢ € RY, R € RY,' and v € Prob(SN) be given. Furthermore, define
€0 > 0 as in (3) and let the functions v,, n = 1,..., N be defined as in Proposition 2.
Then for all (R,p) > 0 and w > —é;/R the demand functions in (20) take the form

0e(R,p,w ,v) = ¢(R, » R, v)(w + é/R)
0z (R, p,w;é, R V) 1 —¢&(R,p; R, v))(w + é/R) (R, p; R, V) (24)

= (
(R b, w; vy, € R) (1 (Rap; Ra V))(w + €0/R)(1 —pTH(R,p; Ra V)) - é0/}z

where ¢(R, p; R, v) = [1 +v* (R, p; R, V)ﬁ}_l and

O(R,p; R,v) := argmax {ﬁ/su([R(l —07p) + 0 @ slvi(s); 7)V1(d8)}

0>0,0Tp<1

(R, p: R,v) = ymax {ﬂ/u([R(l—@T )+ 0@ slui (s); )Vl(ds)}

0>0,0Tp<1 S

One observes that consumption at time ¢ = 0 is given by a fraction ¢(R, p; R, v) of the
sum of current wealth w and the discounted expected non-capital income stream é,/R.
This sum will be called lifetime income. Such a consumption behavior strongly sup-
ports the so-called permanent income hypothesis (see, e.g., Romer 1996). Clearly, only
the quantity w is directly available to the consumer while the quantity €,/R has to be
borrowed by issuing bonds. This is the reason for the appearance of the term —é,/R
in the bond demand function. The optimal investment in shares is determined by the
solution #(R, p; R, v) which is exclusively determined by current and expected financial
prices.

Consider now the case with logarithmic utility where v = 0 in (22). Since in this case
the function u is not defined at zero Assumption 2 must be relaxed to hold only on the
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interior of the consumption set C. However, Lemma 1 implies that the wealth process
(Wo(Z,s7))Y_, induced by any potentially optimal strategy (C,7) € %(R,p,w) has
to satisfy W,(Z,s") > —FE, v— a.s. Otherwise one easily shows that c,(s?) = 0 with
positive probability which implies E, [Up(C, -)] = —o0 < Vo(R, p, w). It follows from this
observation that the decision problem (9) remains well-defined even in the log case.

To alleviate the subsequent notation we define 8, == 1+ 8+ ... + 3¥~" for each
n=20,1,..., N. The following result establishes the form of the value functions for the
log-utility case.

Proposition 3

Let Assumptions 1- 5 be satisfied and let v = 0 in (22). Then the following holds true:

(i) Forn=1,...,N and w, > —E, the value functions V, defined by (12) satisfy
Vo(wp, s7) = Bnln (wn + En) + vn(sh)

where the functions v,, : S™ — R are defined recursively as vy = 0 and

va(s?) = max {(ﬁn - 1) /Sln (Rn(l —0"p,)+ 00 s) Qna1(sT, ds)‘HTpn < 1}

6>0,pTp<1

+ﬂ/Svn+1 (8?, 5)Qn+1(3?a ds) + (ﬂn - 1) ln(ﬁn - 1) - ﬂn ln(ﬂn)

(ii) The solution functions defined in equation (16) take the form

C’:L(’U)n, 8?) = En(wn + En)
Tp(wn,st) = (1 —¢&)(wn + En)en(s?)
yZ(wna s1) = (1 —=¢p)(wy + En)(l - pr—[en(s?)) - En

for each n=1,..., N where ¢, := [1 + ﬂn}_l and

O.(s?) := argmax {/ln (Rn(l —0'p,) + 00 s) Qni1(st, ds)}.
s

0>0,0 Tpn<1

Utilizing Proposition 3 and the fact that equation (3) implies €, = é; + El, one obtains
from (19) the following one-stage decision problem for ¢ = 0 defined for all (R,p) > 0
and w > —é/R:

max {ln(c) + (B — 1)/ln(W(z, 5, o, R))ul(ds) ‘c bytrp=wy> —€0/R}.(25)
(c,2)ECXZ S

Here 3y := (1 + 8+ ...+ ") and the additive constant vy := [ v1(s)r1(ds) has been
omitted since it does not affect the solution to the problem. Utilizing Lemma 6 the
optimal consumption and investment decision for ¢ = 0 can be determined from (25).
The resulting form of the demand functions is stated in the following theorem. Given
the previous derivations the proof is again straightforward by applying Lemma 6 given
in Appendix A.
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Theorem 4

Let Assumptions 1 — 5 be satisfied and suppose v = 0 in (22). Let the consumer’s
planning horizon N > 1 and expectations é € RY, R € RY:! and v € Prob(SN) be
given. Furthermore, define ¢y > 0 as in (3) and the marginal distribution v; as in
Lemma 4. Then for all (R,p) > 0 and w > —éy/R determined by (1) the consumer’s
demand behavior can be described by the functions

@C(Rap,w;ylaé’f{) = (_:(w+€0/R)
@w(Rap:w;Vlaé’ R) = (]- _E)(w+€0/R) G(Rapa Vl) (26)
@y(R,paw;yl,éa R) = (]- _E)(w+€0/R)(]— _pTQ(Rapa Vl)) - €0/]%

where ¢ := [1+ﬂ+...+ﬂN}_1 and

O(R,p;11) := alé(r)r}%);gl{/g In (R(l —0'p)+00 S) 21 (ds)}. (27)
Compared to the previous case where v # 0 the number ¢ defining the marginal propen-
sity to consumption (out of lifetime income) depends exclusively on the subjective dis-
count factor # and the consumer’s remaining lifetime N. This implies that the optimal
consumption decision is independent of any expectations for future asset prices and div-
idends. The remaining lifetime income (1 — ¢)(w + é,/R) is invested into the safe asset
m = 0 and shares m = 1,..., M. In this regard, the amount invested in shares is deter-
mined by the solution 6 to (27). The structure of this problem corresponds exactly to
the portfolio decision problem solved by a consumer with a one-period planning horizon
who is endowed with one unit of wealth and who is neither allowed to take short sales
nor credit. In particular, no expectations for asset prices and dividends which lie further
than one period ahead enter the problem. This property is called complete myopia or
myopic investment behavior and is well-known to hold with logarithmic utility, see, e.g.,
Ingersoll (1987), or Hakansson (1970). Note though that expectations for future bond
returns and non-capital income strongly influence the decision through the term é.
We note from the integral in (27) that only the sum of next period’s prices and divi-
dends s; = (p1,d;) enter the problem defining the cum-dividend price ¢ := p; + d; of
the following period. This sum being a measurable function of the random variable s;
permits us to define an induced measure v, for the random variable ¢ corresponding to
the image measure induced by v;. Clearly, since by (ii) of Assumption 5 and Lemma
9, v, is supported on the compact set S; C S, the support of v, will be a compact
subset Q C RY, . Exploiting the change-of-variable formula the function in (27) can
equivalently be defined as

A

0(R, p; v,) == arg max {/@ln(R +07(q— Rp)) vy(dq) |0Tp <1 } :

PexX

We close this section with the following corollary which specializes Theorem 4 to the
case with a single risky asset where M = 1. The proof follows immediately.
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Corollary 3
Under the hypotheses of Theorem 4 suppose M = 1. Then the demand functions (26)
take the form

wc(R:paw;anéa R) C(’LU+ 6O/fz)

eo(R,pyw;vg, 6, R) = (1—¢)(w+é/R)0(Rp;v,)/p

(
eu(Ropwivg, e, R) = (1—3)(w+a/R)(1 - 6(Rp;v,)) - éo/R

where ¢ is defined as above and the share of (lifetime) income invested in shares is
determined by the continuous map 0(-,v,) : Ry — [0, 1]

B v,) = arg max { [@ In(r + 6(q — 7)) v,(dq) } |

0€[0,1]

5 Conclusions

This paper offers a general mathematical formulation of a multi-period consumption-
investment problem in the presence of uncertainty due to stochastic investment possibil-
ities. Based on the notion of a consumption-investment strategy a multi-period expected
utility maximization problem was formulated under general assumptions on preferences
and expectations. The existence and properties of a solution to the problem were stud-
ied under general assumptions as well as for the special case with CRRA preferences
permitting closed form solutions. The formulation of a demand function parameter-
ized in current prices, wealth and expectations offers a convenient possibility to utilize
the results of this paper in macroeconomic and financial models with uncertainty and
consumers facing a multi-period planning horizon. A first application may be found in
Hillebrand (2007) and Béhm & Hillebrand (2007) who study the role of pension systems
in a stochastic OLG model with multi-period lived consumers. The proposed structure
of the decision problem should also offer a generally applicable framework for most deci-
sion problems in portfolio theory and stochastic macroeconomics. Modifications of the
proposed setup to include short selling and/or the maximization of expected utility of
terminal wealth are straightforward.
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A Mathematical Proofs

A.1 Proof of Lemma 2

It suffices to show that there exists an upper bound U such that E, [Uy(C,-)] < U for
all (C,7) € B(R,p,w). Let (C,7Z) € B(R,p,w) be arbitrary. It suffices to show that
Up(C,sN) < Uforall s €8. Since S =S;x..., xSy with each S, being compact there
exist upper and lower bounds s, € S and s, € S such that s, < s, < 5, v - a.s. for each
n=1,...,N. Setting e.g. s:=min{s,|n =1,...,N} and 5 := max{s,|[n=1,...,N}
these bound can be chosen independently of n. Moreover, letting q :==p+d, §:=p+ d
and ¢, := p, +d, for each n = 1,..., N it follows that 0 < p < p, < pv - as. and
0<q<@q <qv-as. foreachn=1,...,N. Define the wealth process {W,,(Z, s7)}._,
associated with strategy (C,Z) € B(R,p,w) as in (2). By virtue of Definition 2 and
Lemma 1 we have ¢g < w + é/R and cy(s") < W, (Z,s?) + E, for each s7 € S™,
n=1,...,N. It is therefore sufficient to prove that for each n = 1,..., N there exists
W, € R such that

W, (Z,s7) <W, v-as. (28)
We prove (28) for n =1 and then apply an induction argument. To this end, note that
any investment decision (yo, ) made at stage n = 0 satisfies the budget constraint

co + Yo +xJp = w. Utilizing Lemma 1 one obtains bounds on this investment as

—é/R < yp < w =: 7o and :vém) < (w+ é&/R)/p™ =: jém) for each m = 1,..., M.

Setting Zo := (Z",...,Z2")T gives

Wl(Z, 81) = él +Ryo+x(—)rq1 S é1 +R§o+530Tq] =: W1 vV - a.s.

By way of induction, suppose that for some n € {1,..., N — 1} there exists an upper
bound W, such that W,(Z,s?) < W, v - a.s. Lemma 1 and the induction hypothesis
imply that the investment plans y,(-) and z,(-) at stage n satisfy —FE,, < y,(s}) <
Wo(Z,s7) < W, = §o v - as. and 20 (s7) < (Wo(Z,s?) + En)/pi™ < (W, +
E,)/p™ =: 0™ y - as. for each m =1,..., M. Setting Z, := (2", ..., 24")T gives
Wn—l—l(Za 5712—1—1) = én—l—l"‘ﬁzn yn(s?)'i'xn(s?)—r%z—f—l S é\n—l—l'i'Rn gn"—‘f;—q = I/T/n—f—l v - a.s.
which proves the claim (28). Equation (28) and Lemma 1 imply that

(s < ¢ =Wyp+FE, v-as.

for each n =1,..., N and, exploiting the monotonicity of u
N ) N
Us(C, sY) = u(co) + Zﬁ”u(cn(s'f)) <U:=)» ["u(é,) v-as.
n=1 n=0
The last equation implies that E, [Ug(C,-)] < U for all (C, Z) € %(R, p, w) and therefore
Vo(R,p,w) < U < oo. [ |
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A.2 Proof of Lemma 4

For each n = 1,...,N let m, : S¥ — S denote the nth projection mapping de-
fined as m,(S1,---,8n,---,88) = Sy and by w1, : S — S™ T (81,4, 80,4, SN) =
(s1,---,8,) the projection of SV onto its first n components. In the sequel we will utilize

the following factorization lemma the proof of which can be found in Génssler & Stute
(1977, p.198, Satz 5.3.21) and Arnold (1998, p. 23, Satz 1.4.3).

Lemma 5

Let (€21, A1) be a measurable space and (§22,B(§22)) be a Polish space equipped with
its Borelian o-Algebra generated by the open subsets of {)5. Then for each probability
measure vy » on the product space (€1 x €, A; ® B(€)y)) there exists a transition prob-
ability Q2 : 1 x B(£22) — [0, 1] and a marginal probability v, : A; — [0, 1] such that
one has the factorization

ma(a) = [ | / Lo, 02)Qalin, e (). (29)

for each measurable A € A; ® B(€,). The measure vy on (Q4,.A) is defined by the
projection mapping 7, : Q; x Qg — Qy, 71 (w1, ws) = wy such that v, = T :=von] .

The factorization in (29) is vy 5 - a.s. unique.

To apply Lemma 5 we first show that the space S = R}, x R} is Polish. Following
Bauer (1992, p.179, Beispiele 1-4), the Euclidean space RM is Polish, hence R}/, and
Ry being open and closed subspaces of a Polish space are Polish and hence also their
product. This shows that the space S satisfies the requirements of Lemma 5.

The desired factorization (11) of the measure v in Assumption 1 is now achieved by a
repeated application of Lemma 5. In a first step, using the notation of Lemma 5, set
0 =SY1 Qy =S and v 5 = v to obtain the factorization

oB) = [ [ s Quls s (st )

for each measurable B € B(S™) with a transition probability @y : S¥ ' x B(S) — [0, 1]
and a marginal probability vy_; = T y_1v :=v o wi}v_l.

In a second step, set Q; = S¥72 Oy = S and 112 = vy_1 to obtain a factorization of
vy _1 into transition probability Q1 : S¥ =2 x B(S) — [0, 1] and marginal probability
UN_g = T N—oUN—] = I/N_loﬂ'l_,]lv_z. Continuing in this fashion one obtains a sequence of
transition probabilities ,, n = N, ..., 2 and marginal probabilities v,, n = N—1,..., 1.
At each stage n > 1 the measure v, is factorized into a transition probability @, :
S"™! x B(S) — [0,1] and a marginal probability v, 1 = T4 1V = vy o7, ;. In
the final step one obtains a factorization of the measure v, into transition probability
Qs : S x B(S) — [0, 1] and marginal probability v; which satisfies v, = mv 1= v o 7*
completing the proof of Lemma 4. [ |
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A.3 Proof of Theorem 1

(i) Utilizing the properties of the value function V; stated in Proposition 1 and the non-
redundancy of the measure v, stated in Assumption 4 (ii) the proof is straightforward
by following steps 1 — 3 in the proof of Proposition 1.

(ii) For ease of notation we shall adopt the following conventions. For any strategy
(C, Z) € B(R, p,w) we set c,(s7) := co, 2n(s7) := 20 and W (zp_1(s71), $n, €n, Ru1) 1=
wifn = 0 as well as Ry := R as before. Recall from Definition 2 that the terminal plan of
any feasible strategy satisfies ey (sN) = W (zn_1(s¥™), sn, én, Ry_1) and zy(s¥) = 0
VsY € SM. Given the optimal decision (¢}, z%) from (i) and the functions (¢, 2*)(")
defined in Proposition 1 (iii) let the strategy (C*, Z*) be defined as in (ii) of Theorem 1
and set ¢ (wy, st) = ¢§ and 2% (wy,, st) = 2§ if n = 0. Finally, recall from the definition
(12) of the value functions V,,, n = 1,..., N, that for each w > —E, and st es”

A

Vi (i, s7) = u(ct (i, 57) +ﬂ/ (W (0, 5, 5, énats B, 57 )@y (5™, ds). (30)

Let (C,Z) = (¢o,é1(-), -, en(-), 20, 21(), - .-, 2n () € B(R,p, w) be an arbitrary strat-
egy. The claim will follow if we show that E, [Uy(C*,-)] > E, [UO(C', J]. I N =1, this
task is trivial since any strategy reduces to a decision for ¢ = 0 and the inequality is
therefore implied by (i). Hence the remainder assumes that N > 2. The idea of the
proof is to construct a list of induced strategies (C™, Z(™) n =1,..., N—1 obtained by
successively replacing the plans (¢,,2,)(-) in (C, Z) with the potentially optimal plans
for stage n defined by the functions (¢, 2%)(-) from Proposition 1 (iii) and to show that

n~n

E, [T5(C* )] 2 B, [Uy(CD, )] > . > B, [Uo(CN 0, )] > B, [Un(C,9)] . (31)

Following the above conventions, define for each stage n = 0,1,..., N the induced
strategy (C™, ZM) = (&, A§">(), e M), 88 sy ‘;()) as follows:
& (sm) Em(s™), m=01,...,n—1
(s = (), m=01....n—1
& (sm) & (W(E™ (5™, Sy my Bn1), $™) m =n, ..,N (32)
™) = 22 (WEM (ST, Smy emy Rimet), s™) m=mn,...,N.

Observe that each strategy (C’ ) Z (")) is feasible and coincides with the original strategy
(C’, Z) up to period stage n—1 (the same is obviously true for any strategy (C’(m), Z(m))
with m > n ). In particular, the strategies induce the same wealth process until
stage n and hence yield the same random variable W (2,_1(s7™), $p, én, Rn_1) defin-
ing wealth at stage n. From stage n onwards the plans of the strategy (C’(”), A (")) are
defined by the functions ((c},, 2%,) (- ))ﬁ n Observe, however, that this does not im-

ply that (C™, ZM) coincides with (C*, Z*) from stage n onwards because in general
W(én—l(s?_l)a Sn,én, n— 1) # W( n 1( ) SnaenaRn 1)
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Since the above conventions imply that (C™), ZM) = (C, Z) and (C©, Z() = (C*, Z*),
the claim (31) will follow if we show that E, [UO(C(") -)} > E, [UO(0<"+1 -)] for each
n=0,...,N—1. Since by definition (32) the strategies (C™, Z(™) and (C™+1) Z(n+1))

coincide untll stage n — 1, it suffices to show that foreach n=0,..., N —1
N N
> (e ()| 2 K, [Z ﬂm—”u(és;“)(-))] : (33)

Case 1: Assume that n > 0. Let s? € S™ be arbitrary but fixed and set w, :=
W (Zp_1(s771), sn,én,Rn 1) > —E,. Recall from (32) that the strategy (C’("),Z(”)) is
defined by the functions ((c%,, 2%)(-))Y_, from stage n onwards. Using the conditional
distributions @,,, m =n+1,..., N from Lemma 4 and equation (30) this implies that

/- / Zﬁm” (5T Qe (51, ) - Qs (57, dsmys) = Vil 7). (34)

Likewise, for any fixed s7*' € S and Wyt := W (2,(57), Snt1, €nsi, Rn) > —F,. the
plans of strategy (C™+1), Z(+1) gatisfy

/ / Z ’Bm " (n+1)( ))Q ( {V71’ dSN) Qn+2( d8n+2) ﬂVn+1(wn+1a 5?+1)'

m=n+1

(35)
Combining (34) and (35) and recalling from (32) that &5 (s7) = é,(s") and 2"V (s7) =
Zn(sT) one has for each fixed sT € S™

[ [ 32 8mm (e 1) = wlely 7)) Qs ) Qs (o8 )

= Vn(wna S?) - U’(én(s?)) - ﬂ/vn—Fl(W(zﬂ(S?)a S, én+1a Rn)a S?a 8))Qn—|—1 (5?7 dS) 2 07
S
(36)

where as before W, = W (2n_1(s7), $n, én, Rn_1). Clearly, (36) holds with equality if
and only if é,(sT) = ¢ (W, sT) and 2,(s}) = 2% (W, sT). Using the notation introduced
in the proof of Lemma 4 let v, := 7 ,v denote the joint marginal distribution of the
random variables sq,...,s,. The inequality in (36) being true for all s € S™ implies
that it is preserved under integration with respect to v,.°> Hence, integrating both sides

5 Alternatively, one could integrate (36) successively over the conditional distributions Q,,...,Q2
and the marginal distribution v; defined in Lemma, 4.
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of (36) with respect to v, and exploiting the factorization Lemma 4 gives

E | ﬂm“u(éw(-))]

m=n

_ / / / ngn (ST Qu (s ds) -+ Qi (7, dsp e ) (d?)

N

B | 30 0" "l ()

- | /S . /g 3 B (P @ (s dsw) .. Qs (7 s (5

A

- / V(W ot (2, 5y Fon1), 57 (d5T) — / w(én(s7)) v (ds7)
S» n
_ 3 / Vs (W (252, 8, €y ), 87 8)) @y (57, ds)m(dsh) > 0.
S

This proves (33) for the case n > 0.

Case 2: Assume that n = 0. In this case, one has (C©,Z©) = (C* Z*) and the

strategies may only differ with respect to the decisions (c}, z§) and (é(()l), 2(()1)) = (¢, 20)-

Using an analogous reasoning as in the previous case one has from (30) and (32) for
each fixed s; € S

N
/- / > GNQN6don)  Qulon ) = VW G ) o)

/ / 1 ))QN( dSN) Q2(81,d82) = 5‘/1(W(20,51,é1,R),81)-

Hence one obtains, utilizing the factorization Lemma 4

N N

Z ﬂmu(éﬁﬁ)(-))] - E, [Z ﬂmu(@%)(-))]

- / / / Z B (@ (7)) Qu (¥ dsw) - .- Quls, dso) (dsy)

- // / D (sT)Qn (s " dsw) ... Qa(s1, dsa)va (dsy)

= U(CE) + 6/‘/1(W(zga S, é17 R): Sl)yl(ds) - U(éo) - ﬂ/‘/l(W(é(h S, éla R)7 Sl)yl(ds)
S S
> 0,

where equality holds if and only if (&, 2o) = (c, 25)-
(iii) This is an immediate consequence of the last statement. [
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A.4 Proof of Proposition 2

The proof uses the following lemma which is proved first.

Lemma 6

Let © be a probability measure on (S, B(S)) supported on the compact set S C S which
induces non-redundant assets in the sense of Definition 4. Given values ¢ > 0, R > 0,
w > —é/R, p >0 and B >01letg:S— Ry, besome continuous function and define
u(+;7y) as in Assumption 5. Then the solution to the problem

max {u(c; 7)—1—,3/u([f%y—i—é—i—x@s]g(s);7>ﬁ(ds)‘c+y+xTP =w,y > —é/R}
(c,y,0)eCxY xX §
(37)

is uniquely defined and takes the form
¢ = c(w+ é/f?,),
= (1—-¢)(w+é/R)o* (38)
y* = (1-0¢)(w+é/R)(1—-pT0*) —¢/R.

where ¢ = [1 + v*ﬁ} ~ and

0* = arg rglggc{/su([l%(l —p'0)+ 0 s)]g(s); ’y)ﬁ(ds)‘OTp < 1}. (39)
) 6 7=0
U a8 w0 -0 0@ slan)atas) a1 20 @

Proof: We first show that the value 6* in (39) is well-defined. For each 6 € B(p) :=
{6 € RY |p"0 < 1}, define the function

UB;R,p,v) = /u([ﬁ(l —p'0) +0&s)]g(s); y)zﬁ(ds). (41)
S
Applying Lemma 8 the function U(:; R,p, V) being defined on the compact set B(p) is
continuous implying the existence of a solution to (39). Uniqueness will follow if we show
that U(-;R,p, v) is strictly concave. For this purpose, let ¢',6" € B(p) with 6" # 6".
Set 2/ := (1 —p'0',0') € Z and 2" := (1 — p'#",0") € Z and observe that the non-
redundancy property of the measure  implies that the measurable set A(2/, 2", ﬁ) =
{s € S|W(2,s,0,R) # W(2",s,0,R)} has positive measure, i.e., 7(A(z',2", R)) > 0.
Employing a similar argument as in step 2 in the proof of Proposition 1 and exploiting
the linearity of the function W it is now straightforward to show that U(A0' + (1 —
NO"; R,p, ) > NU(0; R, p,0) + (1 — NU(0"; R, p,p) for all X €]0, 1] proving the strict
concavity of the function U (:; R, p, V). This together with the convexity of the set B(p)
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ensures the uniqueness of the solution 6* to (39). It follows that the value v* defined
in (40) is indeed well-defined and satisfies v* > 0 due to the properties of the function
u(-;7y). We claim that the value ¢* defined above satisfies

¢ = arg ma@x{u(c; v) 4+ v*u(w + é/R — ¢;7) ‘c <w+ €/R} (42)
ce

A routine calculation shows that the solution to (42) is of the form ¢* = ¢(w + €/R)
with ¢ being defined as above. Now let the values z* = (w + é/R — ¢*)0* and y* be
defined as above. We show that the triple (¢*, y*, 2*) is the unique maximizer to (37).
Note first that 0 < ¢* < w+¢/R and y* = w—c¢*—pa* > —é/R. Hence the constraints
in (37) are satisfied. Define the value

V*i=u(cy) + ﬁ/gu([l%y* +é+ 2" @ s]g(s); *y)l)(ds). (43)

Let (¢,7,%) # (c*,y*,2*) be another triple satisfying ¢ + 2 'p+ 3 = w and § > —€/R.
Defining

V= u(g7y) —I—,B/Su([RQ+é+§:69s]g(8);7)19(d8) (44)

we show that V* > V. The remainder treats the cases v # 0 and v = 0 separately.
Case 1: v # 0. The definitions of z*, #* and v* and equation (43) imply the relationship

Ve = u(ctiy) + /S u([w+ /R - Y[R = pT0%) + 0" @ 5)lg(s); 7) 2 (ds)
= u(chy) + u(w +eé/R— v)’yﬁ . u([f%(l —p'0*) + 60" @ 5)]g(s); v) v(ds)
= u(cy) + u(w +é/R— ¢ 7) v*. (45)

Suppose ¢ = w + ¢/R. Then the budget conditions imply § = —¢é/R and & = 0.
Equations (42), (44) and (45) together with ¢* # ¢ then yield

Vzu(é;fy) = u(é;’y)+u(w+€/R—é;7)v*
< u(c7) +ulw +é/R— Fy) vt = V™.

Suppose ¢ < w + ¢/R. Defining 6 := [w + ¢/R — ¢|"'& and observing that 6 € B(p)
gives

Vo= u@y)+h /S u(lw+é/R - RO —p"0)+ 8 9)lg(s)7)0(ds)  (46)
= (&) 4 u(w+é/R—&y)D

where




Note that our assumption (&, ¢,%) # (c*,y*, «*) implies (¢ 6) # (¢*,6*). Suppose first
that v > 0. Then equation (40) gives v* > ¥ (with strict inequality if 6 # 6*). Equations
(45) and (46) then imply

1 w(@ ) + u(w + é/R — & y)v* (48)

<
< u(cy) +u(w+ é/R — 5yt = V*

with at least one inequality being strict. Second, suppose v < 0. Then equation (40)
gives v* < ¢ (with strict inequality if 0 + 6*). Since utility is negative-valued one has
u(c; y)v* > u(c;y)v for each ¢ > 0. Repeating the previous argument shows that the
inequality (48) also holds in case v < 0. Hence V < V*.

Case 2: 7 = 0. Note that the boundary cases ¢ = w—i—é/]% and & = 0 both give V = —o0
such that trivially V* > V in this case. Suppose therefore that 0 < ¢ < w + €/R and
define # as before. In this case equations (43) and (45) may be written as

V' = (i) + Bulw+ e R= ) + 6 [ ul(R0 =T+ 0 @ a5 )o(ds)
Vo= u(@)+ BulwréfR-) + 5 [u(R0-p70)+ e sla(s):7)o(ds).
Recalling from (40) that v* = (3 one observes from equations (39) and (41) that
w(@y) + Bu(w+ée/R—&v) < u(cy)+Bu(w+é/R—c57)
[ullha =0 + 8@ la0i)ods) < [ u(R -8+ @ s)a(s):0)7(ds)

with at least one of the inequalities being strict. This shows that V* > V also in this
case. Since (¢, ¢, ) was arbitrary, the triple (c*, y*, z*) is indeed the unique maximizer
of (37). O

Proof of Proposition 2

Since vy = 1 and Ey = 0 the claim in (i) is obviously satisfied for n = N. We
therefore apply an induction argument by supposing there exists n € {1,..., N—1} and a
continuous function v, : S"*' — R, such that V;,;; is of the form V, 1 (w,157"") =
u([wpi1 + Ep1]vnsr (s7FY); 7). It will be shown that this implies the functional forms
of V,, given in (i) and the solution functions defined in (ii). Let s? € S w, > —E, be
arbitrary but fixed. Noting from (3) that é,1 + En+1 = R, E, it follows from (12) and

the induction hypothesis that the value function V,, satisfies

Vawn,sf) = max Z{u<c; N+ 8 | u[Bnly+ Ba) + 7. slonia (s, 9);7) Quia (57, ds)
(¥4 Snt1

Yy=w, —C— mTpn Z _En}(49)
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Utilizing Lemma 6 (setting 7 = Qn41(s7,+), S = Spq1, R =R, ¢ = E,R,, w = w,,
P =Dpn, B =0 and g = v,41(s7,-) the solution to the maximization problem in (52)
takes the form

ey (wn, 1) = e(s7) (wn + En)
x;(wn: st) = (1—2(s7)) (wn + En) On(sT) (50)
Ui(wn, 7)) = (1—e(s7)) (wn + En) (1 — p 6n(sT)) — En,

where ¢,(s7) == [1+ UZ(S?)ﬁ}_ and

ilot) o= e 15 [ullfa 570+ 00 (s 5:7)Qus (51,9}

6>0,p] 9<1

au(st) = amgmax { (R0~ p]0) + 00 )51, )57) Qs 51,9 |

6>0,p] 0<1

This proves the second claim (ii) of the proposition. Substituting the solutions in (50)
into (49) and omitting the arguments (w,, s}) for notational convenience gives

Va(wn, s7) = ulcy;y) + ﬁ/s U([Rn(y: + E,) + 2 ® sloni1(sT, 5); 7) Quir (57, ds)
= (@ (D) wa + Ba)i7) 4+ u((L = (D) (wa + Bo);7)
s u([R”(l — P Bn(sT)) + On(sT) ® 8)]vn11(sT, 5);7) Quia (7, ds)
)

)

A

Cn(sT)(wn + Ey); ’Y) + u((l — Ca(sT))(wy + En)a 7)”;(5?)
wn + Byi ) (@ (s1)7 + (7)1 = 2a(s7))7)

I
£
—~

Recalling that &,(s7) = [1+ v*(s?)ﬁ} ! the second term may be written as
L+ up () (1)
1 17
1+ v5(s9) ™

1—y
= [1uen ]

Cn(s7)7 + vn(s7) (1 — en(s7))”

1
Setting v,(s7) := [1 + v;(s?)ﬁrl then gives the claim (i) for the function V;,. The
fact that each v, is continuous is an immediate consequence of Proposition 1. |

A.5 Proof of Proposition 3

Since the claim in (i) is again immediately satisfied for n = N we apply the same induc-
tion argument as in the proof of Proposition 2 supposing there exists n € {1,..., N —1}
such that the claim (i) holds for V,, ;. Let s? € S™ and w,, > —E, be arbitrary but
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fixed. Using the recursive definition (12) yields the value function V,, under the induction
hypothesis as

Vi (wn, 1) = Vn(wna s1) + ﬂ/vnﬂ(s?: 8)Qny1(sT,ds) (51)
S
where, noting that 3,1 = (8, — 1) and that é,,; + E’n+1 =R,E, by virtue of (3)
Vi (wn, s7) = max {ln(c) + (B —1) / ln(Rn(y +E,)+zd $)Qni1(sT, ds)
(e,y,2)ECXY xX Sn+1

y:wn—c—prnz—En}. (52)

Utilizing Lemma 6 (setting 7 = Qn41(s7,+), S = Spq1, R=R,, ¢ =E,R,, w= w,,
P ="Dn, = 0Fn—1and g =v,41(s},-) the solution to the maximization problem in (52)
takes the form

(W, sT) = Gp(wn + En)
i (wn, s7) = (1—2,)(wn + En) 0 (53)
Ya(wn,st) = (1) (wa+ En) (1 - pp07) — Bn

where ¢, := - and

Bn

fex

/ ln(Rn(l —0'p,)+00 8) Qn+1(s7, ds)‘HTpn < 1}-

Sn+1

0,(st) = arg max{

This proves the claim in (ii). Substituting the solution (53) into (52) and omitting the
arguments (wy, st) for convenience yields

Vn(wn: 8?) = ]H(C’;) + (ﬂn - 1) /Sln (Rn(y; + En) + x:z S S)QVH—I(S?a dS)

= In(c) + (Bn — 1) In(w, + E, — )
b [ 1Bl = 001 5) + 60(67) @ 5) Quia (57 )

Sn+1
= In(w, + E,) + (8, — DB, — 1) — B, In 5, (54)
+ / 1n( a1~ 0u(51)pa) + 0u(57) © ) Qo (o7, ds).
Sn+1

Combining (51) and (54) gives the claim (i). The fact that each v, is continuous follows
again from Proposition 1. |

B Technical Results

The following part collects some technical devices that are used in this paper. Although
most of the results are standard, a proof is included here for ease of reference.
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Lemma 7

Let (Q, B,v) be a probability space and f,g : Q0 — R be measurable functions which
are v-integrable and satisfy the conditions f(w) > g(w) for all w € Q and v({w €
Q| f(w) > g(w)}) > 0. Then

[ semtds) > [ g,

Proof: Consider the function h := f — g which is measurable and v-integrable. By defi-
nition A(w) > 0 for all w € Qand v({w € Qh(w) > 0}) > 0. By the monotonicity of inte—

grals one has [, h(w)v(dw) > 0. Assume by way of contradiction that [, h(w)v(dw) =
Following Bauer (1992 Satz 13.2, p. 81) thls is equivalent to v({w € Q|h(w ) > 0}) = 0,
Whlch is a contradiction. Hence fQ Jv(dw) > 0 and, by the linearity of integrals,
Jo flw)v(dw) > [, g(w)v(dw). [
Lemma 8

Let © be a topological space and (2, B(2),v) be a probability space with v being
supported on the compact subset Q € B(Q), i.e., v(Q) = 1. Let © C RT, be a compact
set and h : © x {2 — R be a continuous function. Then h is v-integrable and the map
H : © — R defined as

H(O) = /Q 70, w)v(dw)

1S continuous.

Proof: We show that the requirements (a) — (c¢) of Lemma 16.1 in Bauer (1992, p. 101)
are satisfied.
(a) Since v is supported on the compact set 2, the function H can be written as

H(H):/Qh(e,w)l/(dw).

For each fixed # € © the continuous mapping h(f,-) : @ — R is Borel-measurable
and bounded from above by the value h(f) := max{h(f,w)|w € Q} and from below
by h(f) := min{h(f,w)|w € Q}. Note that both bounds are well-defined due to the
compactness of 2. This implies that the map h(0, -) is v-integrable for all § € ©.

(b) By assumption, for each fixed w € Q the map A(-,w) : © — R is continuous and
hence continuous at each point 6, € ©.

(c) Exploiting compactness of the set © x Q by virtue of Tychonoff’s theorem (cf.
Lipschutz 1965, p. 171, Theorem 12.9), the value h := max{|h(6,w)| : (§,w) € © x Q}
is well-defined and satisfies |h(6,w)| < h for all (§,w) € © x Q.

Thus we see that the map A fulfills the requirements (a)-(c) in Bauer (1992, Lemma
16.1, p. 101), which implies that the map H(-) is continuous. [ |
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Lemma 9

Suppose that the measure v defined in Assumption 1 is supported on the measurable
subset S = S; x ... x Sy € B(SY). Then each conditional distribution Q,(s7™*,"),
n=2,...,N is supported on S, while the marginal distribution v, is supported on S;.

Proof: For each measurable set B € B(SY) we have B = (BNS) ¥ (BN S where W
denotes the union of disjoint sets and S¢is the complement of S. Since v is supported
on S and BN S¢C S¢we have (BN 'S¢ = 0 and therefore

v(B) =v(BNS)+v(BNS%) =v(BNS) VB e B(SY). (55)

Noting that 15~5(sY) = 1p(sV) - 15(sY) and 15(s¥) = [[2_, 15, (s,) one obtains the

n=1
factorization (11) as

v(B) = v(BNS) 56)
= /S/S. . ./SIB(S{V) lsN(SN)QN(sf/—l’ dsy)--- 1§2(32)Q2(81, d82)1s1(81)V1(d81)

B é1 /S2 o ~/SN lB(S{V) QN(S{V_I’ dSN) U QQ(Slv dsZ)Vl(dsl)'

This equality being true for all B € B(SY) requires that for each n = 2,..., N and
all s77' € S"! the set S, must have full measure, i.e. Q,(s77",S,) = 1. Hence the
support of Q,(s7 !, -) must be a subset of S,,. The fact that the support of v, is the set
S, follows immediately from the fact that v;(-) = v o, *(+) is induced by the projection
7 (cf. proof of Lemma 4). [ |

Lemma 10
Given E > 0, the correspondence B : [~F,c0[ x RY, = C x Y x X,

B(w, p) := {(c,y,x) eCxYx X‘c—}—y-i-pr: w, y > _E}
is (upper- and lower-hemi-) continuous.

Proof: Noting that B is non-empty- and compact-valued, we may apply the defini-
tions given in Stokey & Lucas (1994, p. 56) to show that B is lower- and upper-hemi-
continuous at each point (wg,py) € [—E, 0o[xRY, .

L.h.c. Let the point (wp,py) € [—En,oo[x]RQ’IJr be arbitrary and let (wy,pn)n>1 be
a sequence taking values in [—En, oo[ xR}, which satisfies lim,, o (wn, pn) = (w0, Po).
Let (co, Yo, Zo) be an arbitrary point in B(wq, po). We show that there exists a sequence
(Cn» Yn, Tn)n>1 Which satisfies (cn, Yn, Tn) € B(wn, p,) for all n and lim, oo (cn, Yn, Tn) =
(co, Yo, o). Assume first that wy > —F and define for each n > 1

my _ Wt E "

wn-l—E‘ ( T
= —Cg, Xy = ———xy ,m=1,....M andy, :=w,—c,—x, Py
wo+E " we+ B pim Yt e T o B

Cn
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Then we have limy, o0 cn = ¢o > 0, limy, o0 27 = x(()m) > 0 for each m=1,..., M and
lim,, 0 Yn = Yo > —E. By construction, ¢, + y, + z, p, = w, for all n and

E A A
-
Yn = Wy — —(co + py To) > Wy, — —(wog+ F) = —F
UJ()+E(0 0 O) UJ()+E( 0 )

which shows that indeed (cp, yn,z,) € B(w,,p,) for all n. In the second case where
wo = —F one observes from the definition of B that the set B(wp,po) is a singleton
and the point (co, Yo, To) must satisfy c¢g = 0, yo = —FE and xo = 0. In this case, define
¢n =0, y, = w, and z,, = 0 for each n > 1 to see that (¢,, Yn, z,) € B(w,, p,) for all n
and lim,, o (¢n, Yn, o) = (0, —E, 0) = (co, Yo, o). This proves that B is indeed L.h.c. on
its domain of definition.

U.h.c. Let (wn,Pn)n>1 and (cu,Yn,Tn)n>1 be arbitrary sequences taking values in
[—E’n,oo[xRﬁr and C x Y x X which satisfy (c,,yn,zn) € B(w,,p,) for all n and
limy, s oo (Wn,y Pn) = (Wo,po) € [—En, oo[xRY, . We show that there exists a convergent
subsequence (cn,, Yng: Tng )k>1 Of (Cn, Yn, Tn)n>1 which satisfies limy_,o0(Cny s Ung, Tny) =
(o, Yo, o) wWhere (co, Yo, o) € B(wg,po). Note first that (wy, pn)n>1 being a convergent
sequence implies that it must be bounded. In particular there exist values w > —E
and [_)(m) >0, m=1,...,M such that w, < w and [_)(m) < p%m) for all n > 1. Since
(CnyYn, Tn) € B(wy,pn) for all n this implies 0 < ¢, < w + E, -F <y, < w and
0<zi™ < (o + E)/p(m), m =1,..., M. Hence the sequence (¢, Yn, Zn)n>1 is bounded
implying the existence of a convergent subsequence (¢p,, Yn,, Tn,)k>1- Let (co, Yo, To) =
limyy00(Cny > Yny» Tny)- 1t therefore remains to show that (co, yo, zo) € B(wo, po). Since
L >0, yp, > —E and ZTn, > 0, m = 1,...,M for all k > 1 one has ¢g > 0,
yo > —E and :c(()m) > 0, m = 1,...,M. Furthermore, since (w,,p,)n,>1 converges
to (wo, po), so does the subsequence (wy, , P, )k>1 (cf. Lipschutz 1965, p.65). Therefore,
since limy_, o0 (Wn,, P, ) = (Wo, o) and for each k& > 1 one has c,, +ynk+$;kpnk — Wy, =0
this yields limg_,e0(Cny + Yny, + 2y Pny — Wn,) = Co + Yo + g Po — wo = 0 and therefore
(co, Yo, o) € B(wg, po)- [ |

Cn
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